
1

Accelerating Time-Varying
Hardware Volume Rendering

Using TSP Trees and
Color-Based Error Metrics

David Ellsworth Ling-Jen Chiang
AMTI/NASA Ames Research Center

Han-Wei Shen
The Ohio State University

Motivation

• Rendering large time-varying volumes is
slow

• Can accelerate with hardware texturing

• Limited texture memory limits speed
– separate texture memory

– must load texture memory during rendering

2

Using Coherence to Accelerate
Rendering

• Spatial coherence
– region does not vary much

spatially

– flat shade region, or don’t render
if transparent

• Temporal coherence
– region does not vary much over

time

– share region’s texture between
time steps

time
step

1

time
step

2

Approach

• Use Time-Space Partitioning (TSP) tree to
identify coherence
– by computing per-region error metrics

– allows specification of allowable error

• Use error metrics based on voxel color
instead of voxel value

• Modify texture hardware volume rendering
algorithm
– regular grids only

3

Related Work

• Volume rendering using texturing hardware
Cullip and Neuman, 1993; Cabral, Cam, and
Foran, 1994; SGI Volumizer 1998

• Spatial hierarchies to find spatial coherence
Levoy, 1990; Laur and Hanrahan, 1991;
Wilhems and Van Gelder, 1994; Lamar et al.,
1999

• First TSP tree paper
Shen, Chiang, and Ma, 1999

TSP Tree Data Structure

t=0 t=1 t=2 t=3

[0,1]

[0,3]

Octree Hierarchy
Time Tree

(one per Octree node)

4

TSP Tree Creation Algorithm

• Create octree skeleton and time trees

• Compute per-node temporal and spatial
statistics and error metrics

• Update color-based error metrics when
transfer function changes

TSP Tree Traversal Algorithm

• Compares error values
in tree with error
tolerances

• Finds set of nodes that
covers volume and
meets error tolerances

• Returns nodes largest
in time and space

5

Minimum Subvolume Size

• Octree divides volume into subvolumes

• What size of subvolume?
– smaller subvolumes find more coherence

– larger subvolumes have less overhead
• replicated voxels at boundaries

• per-texture management

• polygon generation and rendering

• We use 32x32x32 subvolumes

Error metrics
• Scalar metrics:

– spatial: standard deviation of voxels over
subvolume

– temporal: average of per-voxel standard
deviations over time

– can be precomputed

• Reference color color:
– modify standard deviation to use alpha-

weighted distance between colors in RGB space

– very slow: 4-20 minutes

6

Approximate Color Error Metric

• Does not compute voxel colors

• Spatial metric:
– assumes scalar values are normally distributed

– uses precomputed average and variance of
scalars

– recast standard deviation calculation to use
distribution’s population counts

– fast: only iterates over transfer function entries

Approximate Color Error Metric

• Temporal metric is product of:
– average difference between adjacent color table

entries

– average per-voxel standard deviation over time

• Fast: we compute in at most 0.3 seconds

7

Implementation

• Fast incremental polygon slicing algorithm
(Yagel et al., 1996)

• Creates textures for each time step, then
reuses them (cached/non-cached)
– via OpenGL glBindTextureExt

Experiments

• On Onyx2 InfiniteReality2, 64 MB texture
memory, 1GB main memory

• Three error tolerances
– zero

– slight: has hard-to-notice artifacts

– moderate: has unobjectionable artifacts

• Compared TSP & non-TSP algorithms
using different error metrics
– comparable error tolerances

8

Data Sets

Sparse Delta

20 and 66 Mvoxels

Filled Delta

20 and 66 Mvoxels

F18

64 Mvoxels

Shock

50 Mvoxels

Error Tolerance Example

slight error moderate error

Image
with error
allowed

Contrast-
enhanced
difference
from zero
error

9

Video

• Typical user interaction

• Algorithm visualization

Error Tolerance Visualization

10

Results Summary

• TSP tree runs almost always faster when
coherence exists

• Slower if no coherence due to overhead

• Non-zero error tolerance allows sharing of
textures

• Reference and approximate color error
metrics have very similar performance

Times While Creating Textures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lg. Delta,
sparse

F18 Shock Sm. Delta,
sparse

T
im

e
(s

ec
)

Non-TSP

TSP,
Ref. Color

TSP,
App. Color

• Scalar error metric times range from 0.4 to 9 sec

Zero Error Tolerance

11

Times When Textures Created

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lg. Delta,
sparse

F18 Shock Sm. Delta,
sparse

T
im

e
(s

ec
)

Non-TSP

TSP,
Ref. Color

TSP,
App. Color

• Scalar error metric times range from 0.1 to 4.5 sec

Zero Error Tolerance

Difficult Case

0
0.5

1
1.5

2

2.5
3

3.5
4

4.5
5

Zero error Moderate error

T
im

e
(s

ec
)

Non-TSP

TSP,
Ref. Color

TSP,
App. Color

• Small texture savings with zero error tolerance

• Algorithm could fall back on non-TSP algorithm

Large Delta
Filled Transfer Function

Textures Already Created

12

Times with Error Allowed

0

0.1

0.2

0.3

0.4

0.5

0.6

Lg. Delta,
sparse

F18 Shock Sm. Delta,
sparse

T
im

e
(s

ec
)

Zero Error

Slight Error

Mod. Error

• Approximate color error metric, textures created

Conclusions

• TSP tree algorithm accelerates hardware
volume rendering
– uses coherence to reduce texture usage and

reduce rendering time

• Color-based error metrics
– more effective at finding coherence than scalar-

based metrics

– approximate color error metric is effective and
fast

13

Future Work

• Fall back to non-TSP algorithm when no
coherence

• Error metrics using perceptual color space

• Simplification of TSP traversal algorithm

Acknowledgements

• Data sets
– Neal Chaderjian

– Ken Gee

– Scott Murman

– Ravi Samtaney

• Work supported by NASA Contracts
NAS2-14303 and DTTS59-99-D-
00437/A61812D

